博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
HBase-1.2.4LruBlockCache实现分析(一)
阅读量:6246 次
发布时间:2019-06-22

本文共 11055 字,大约阅读时间需要 36 分钟。

一、简介

      BlockCache是HBase中的一个重要特性,相比于写数据时缓存为Memstore,读数据时的缓存则为BlockCache。

      LruBlockCache是HBase中BlockCache的默认实现,它采用严格的LRU算法来淘汰Block。

二、缓存级别

      目前有三种缓存级别,定义在BlockPriority中,如下:

public enum BlockPriority {  /**   * Accessed a single time (used for scan-resistance)   */  SINGLE,  /**   * Accessed multiple times   */  MULTI,  /**   * Block from in-memory store   */  MEMORY}

      1、SINGLE:主要用于scan等,避免大量的这种一次的访问导致缓存替换;

      2、MULTI:多次缓存;

      3、MEMORY:常驻缓存的,比如meta信息等。

三、缓存实现分析

      LruBlockCache缓存的实现在方法cacheBlock()中,实现逻辑如下:

      1、首先需要判断需要缓存的数据大小是否超过最大块大小,按照2%的频率记录warn类型log并返回;

      2、从缓存map中根据cacheKey尝试获取已缓存数据块cb;

      3、如果已经缓存过,比对下内容,如果内容不一样,抛出异常,否则记录warn类型log并返回;

      4、获取当前缓存大小currentSize,获取可以接受的缓存大小currentAcceptableSize,计算硬性限制大小hardLimitSize;

      5、如果当前大小超过硬性限制,当回收没在执行时,执行回收并返回,否则直接返回;

      6、利用cacheKey、数据buf等构造Lru缓存数据块实例cb;

      7、将cb放置入map缓存中;

      8、元素个数原子性增1;

      9、如果新大小超过当前可以接受的大小,且未执行回收过程中,执行内存回收。

      详细代码如下,可自行阅读分析:

// BlockCache implementation  /**   * Cache the block with the specified name and buffer.   * 

* It is assumed this will NOT be called on an already cached block. In rare cases (HBASE-8547) * this can happen, for which we compare the buffer contents. * @param cacheKey block's cache key * @param buf block buffer * @param inMemory if block is in-memory * @param cacheDataInL1 */ @Override public void cacheBlock(BlockCacheKey cacheKey, Cacheable buf, boolean inMemory, final boolean cacheDataInL1) { // 首先需要判断需要缓存的数据大小是否超过最大块大小 if (buf.heapSize() > maxBlockSize) { // If there are a lot of blocks that are too // big this can make the logs way too noisy. // So we log 2% if (stats.failInsert() % 50 == 0) { LOG.warn("Trying to cache too large a block " + cacheKey.getHfileName() + " @ " + cacheKey.getOffset() + " is " + buf.heapSize() + " which is larger than " + maxBlockSize); } return; } // 从缓存map中根据cacheKey尝试获取已缓存数据块 LruCachedBlock cb = map.get(cacheKey); if (cb != null) {// 如果已经缓存过 // compare the contents, if they are not equal, we are in big trouble if (compare(buf, cb.getBuffer()) != 0) {// 比对缓存内容,如果不相等,抛出异常,否则记录warn日志 throw new RuntimeException("Cached block contents differ, which should not have happened." + "cacheKey:" + cacheKey); } String msg = "Cached an already cached block: " + cacheKey + " cb:" + cb.getCacheKey(); msg += ". This is harmless and can happen in rare cases (see HBASE-8547)"; LOG.warn(msg); return; } // 获取当前缓存大小 long currentSize = size.get(); // 获取可以接受的缓存大小 long currentAcceptableSize = acceptableSize(); // 计算硬性限制大小 long hardLimitSize = (long) (hardCapacityLimitFactor * currentAcceptableSize); if (currentSize >= hardLimitSize) {// 如果当前大小超过硬性限制,当回收没在执行时,执行回收并返回 stats.failInsert(); if (LOG.isTraceEnabled()) { LOG.trace("LruBlockCache current size " + StringUtils.byteDesc(currentSize) + " has exceeded acceptable size " + StringUtils.byteDesc(currentAcceptableSize) + " too many." + " the hard limit size is " + StringUtils.byteDesc(hardLimitSize) + ", failed to put cacheKey:" + cacheKey + " into LruBlockCache."); } if (!evictionInProgress) {// 当回收没在执行时,执行回收并返回 runEviction(); } return; } // 利用cacheKey、数据buf等构造Lru缓存数据块实例 cb = new LruCachedBlock(cacheKey, buf, count.incrementAndGet(), inMemory); long newSize = updateSizeMetrics(cb, false); // 放置入map缓存中 map.put(cacheKey, cb); // 元素个数原子性增1 long val = elements.incrementAndGet(); if (LOG.isTraceEnabled()) { long size = map.size(); assertCounterSanity(size, val); } // 如果新大小超过当前可以接受的大小,且未执行回收过程中 if (newSize > currentAcceptableSize && !evictionInProgress) { runEviction();// 执行内存回收 } }

四、淘汰缓存实现分析

      淘汰缓存的实现方式有两种:

      1、第一种是在主线程中执行缓存淘汰;

      2、第二种是在一个专门的淘汰线程中通过持有对外部类LruBlockCache的弱引用WeakReference来执行缓存淘汰。

      应用那种方式,取决于构造函数中的boolean参数evictionThread,如下:

if(evictionThread) {      this.evictionThread = new EvictionThread(this);      this.evictionThread.start(); // FindBugs SC_START_IN_CTOR    } else {      this.evictionThread = null;    }
      而在执行淘汰缓存的runEviction()方法中,有如下判断:

/**   * Multi-threaded call to run the eviction process.   * 多线程调用以执行回收过程   */  private void runEviction() {    if(evictionThread == null) {// 如果未指定回收线程      evict();    } else {// 如果执行了回收线程      evictionThread.evict();    }  }
        而EvictionThread的evict()实现如下:

@edu.umd.cs.findbugs.annotations.SuppressWarnings(value="NN_NAKED_NOTIFY",        justification="This is what we want")    public void evict() {      synchronized(this) {        this.notifyAll();      }    }
        通过synchronized获取EvictionThread线程的对象锁,然后主线程通过回收线程对象的notifyAll唤醒EvictionThread线程,那么这个线程是何时wait的呢?答案就在其run()方法中,notifyAll()之后,线程run()方法得以继续执行:

@Override    public void run() {      enteringRun = true;      while (this.go) {        synchronized(this) {          try {            this.wait(1000 * 10/*Don't wait for ever*/);          } catch(InterruptedException e) {            LOG.warn("Interrupted eviction thread ", e);            Thread.currentThread().interrupt();          }        }        LruBlockCache cache = this.cache.get();        if (cache == null) break;        cache.evict();      }    }
        线程会wait10s,放弃对象锁,在notifyAll()后,继续执行后面的淘汰流程,即:

/**   * Eviction method.   */  void evict() {    // Ensure only one eviction at a time	// 通过可重入互斥锁ReentrantLock确保同一时刻只有一个回收在执行    if(!evictionLock.tryLock()) return;    try {    	      // 标志位,是否正在进行回收过程      evictionInProgress = true;            // 当前缓存大小      long currentSize = this.size.get();      // 计算应该释放的缓冲大小bytesToFree      long bytesToFree = currentSize - minSize();      if (LOG.isTraceEnabled()) {        LOG.trace("Block cache LRU eviction started; Attempting to free " +          StringUtils.byteDesc(bytesToFree) + " of total=" +          StringUtils.byteDesc(currentSize));      }      // 如果需要回收的大小小于等于0,直接返回      if(bytesToFree <= 0) return;      // Instantiate priority buckets      // 实例化优先级队列:single、multi、memory      BlockBucket bucketSingle = new BlockBucket("single", bytesToFree, blockSize,          singleSize());      BlockBucket bucketMulti = new BlockBucket("multi", bytesToFree, blockSize,          multiSize());      BlockBucket bucketMemory = new BlockBucket("memory", bytesToFree, blockSize,          memorySize());      // Scan entire map putting into appropriate buckets      // 扫描缓存,分别加入上述三个优先级队列      for(LruCachedBlock cachedBlock : map.values()) {        switch(cachedBlock.getPriority()) {          case SINGLE: {            bucketSingle.add(cachedBlock);            break;          }          case MULTI: {            bucketMulti.add(cachedBlock);            break;          }          case MEMORY: {            bucketMemory.add(cachedBlock);            break;          }        }      }      long bytesFreed = 0;      if (forceInMemory || memoryFactor > 0.999f) {// 如果memoryFactor或者InMemory缓存超过99.9%,        long s = bucketSingle.totalSize();        long m = bucketMulti.totalSize();        if (bytesToFree > (s + m)) {// 如果需要回收的缓存超过则全部回收Single、Multi中的缓存大小和,则全部回收Single、Multi中的缓存,剩余的则从InMemory中回收          // this means we need to evict blocks in memory bucket to make room,          // so the single and multi buckets will be emptied          bytesFreed = bucketSingle.free(s);          bytesFreed += bucketMulti.free(m);          if (LOG.isTraceEnabled()) {            LOG.trace("freed " + StringUtils.byteDesc(bytesFreed) +              " from single and multi buckets");          }          // 剩余的则从InMemory中回收          bytesFreed += bucketMemory.free(bytesToFree - bytesFreed);          if (LOG.isTraceEnabled()) {            LOG.trace("freed " + StringUtils.byteDesc(bytesFreed) +              " total from all three buckets ");          }        } else {// 否则,不需要从InMemory中回收,按照如下策略回收Single、Multi中的缓存:尝试让single-bucket和multi-bucket的比例为1:2          // this means no need to evict block in memory bucket,          // and we try best to make the ratio between single-bucket and          // multi-bucket is 1:2          long bytesRemain = s + m - bytesToFree;          if (3 * s <= bytesRemain) {// single-bucket足够小,从multi-bucket中回收            // single-bucket is small enough that no eviction happens for it            // hence all eviction goes from multi-bucket            bytesFreed = bucketMulti.free(bytesToFree);          } else if (3 * m <= 2 * bytesRemain) {// multi-bucket足够下,从single-bucket中回收            // multi-bucket is small enough that no eviction happens for it            // hence all eviction goes from single-bucket            bytesFreed = bucketSingle.free(bytesToFree);          } else {        	// single-bucket和multi-bucket中都回收,且尽量满足回收后比例为1:2            // both buckets need to evict some blocks            bytesFreed = bucketSingle.free(s - bytesRemain / 3);            if (bytesFreed < bytesToFree) {              bytesFreed += bucketMulti.free(bytesToFree - bytesFreed);            }          }        }      } else {// 否则,从三个队列中循环回收        PriorityQueue
bucketQueue = new PriorityQueue
(3); bucketQueue.add(bucketSingle); bucketQueue.add(bucketMulti); bucketQueue.add(bucketMemory); int remainingBuckets = 3; BlockBucket bucket; while((bucket = bucketQueue.poll()) != null) { long overflow = bucket.overflow(); if(overflow > 0) { long bucketBytesToFree = Math.min(overflow, (bytesToFree - bytesFreed) / remainingBuckets); bytesFreed += bucket.free(bucketBytesToFree); } remainingBuckets--; } } if (LOG.isTraceEnabled()) { long single = bucketSingle.totalSize(); long multi = bucketMulti.totalSize(); long memory = bucketMemory.totalSize(); LOG.trace("Block cache LRU eviction completed; " + "freed=" + StringUtils.byteDesc(bytesFreed) + ", " + "total=" + StringUtils.byteDesc(this.size.get()) + ", " + "single=" + StringUtils.byteDesc(single) + ", " + "multi=" + StringUtils.byteDesc(multi) + ", " + "memory=" + StringUtils.byteDesc(memory)); } } finally { // 重置标志位,释放锁等 stats.evict(); evictionInProgress = false; evictionLock.unlock(); } }

        逻辑比较清晰,如下:

        1、通过可重入互斥锁ReentrantLock确保同一时刻只有一个回收在执行;

        2、设置标志位evictionInProgress,是否正在进行回收过程为true;

        3、获取当前缓存大小currentSize;

        4、计算应该释放的缓冲大小bytesToFree:currentSize - minSize();

        5、如果需要回收的大小小于等于0,直接返回;

        6、实例化优先级队列:single、multi、memory;

        7、扫描缓存,分别加入上述三个优先级队列;

        8、如果forceInMemory或者InMemory缓存超过99.9%:

              8.1、如果需要回收的缓存超过则全部回收Single、Multi中的缓存大小和,则全部回收Single、Multi中的缓存,剩余的则从InMemory中回收(this means we need to evict blocks in memory bucket to make room,so the single and multi buckets will be emptied):

              8.2、否则,不需要从InMemory中回收,按照如下策略回收Single、Multi中的缓存:尝试让single-bucket和multi-bucket的比例为1:2:

                        8.2.1、 single-bucket足够小,从multi-bucket中回收;

                        8.2.2、 multi-bucket足够小,从single-bucket中回收;

                        8.2.3、single-bucket和multi-bucket中都回收,且尽量满足回收后比例为1:2;

        9、否则,从三个队列中循环回收;

        10、最后,重置标志位,释放锁等。

四、实例化

        参见《HBase-1.2.4 Allow block cache to be external分析》最后。

转载地址:http://rqgia.baihongyu.com/

你可能感兴趣的文章
Windows域环境下部署ISA Server 2006防火墙(三3)
查看>>
exchange部署在不同服务器上的一些区别
查看>>
Spring MVC 图片上传和下载
查看>>
我的友情链接
查看>>
nginx配置
查看>>
js获取本周、本季度、本月、上月的开端日期、停止日期
查看>>
day18 java 语言中的Map集合
查看>>
APP公共测试点
查看>>
remote tools
查看>>
技术流, 又充满争议的网站
查看>>
你可能还不知道的7个jQuery插件
查看>>
Grails 技巧 - Grails and Hibernate
查看>>
Github使用教程(一)--搭建Github环境
查看>>
Spring 事务使用详解
查看>>
九款可免费下载的app导航条
查看>>
ORACLE 限制特定IP访问数据库 访问白名单
查看>>
bash脚本中的显示效果
查看>>
oracle 11g和10gswap大小设置
查看>>
linux netstat 总结
查看>>
***之ip隧道应用策略路由实现走向分流
查看>>